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Abstract

The thermal effects due to curing of the adhesive and due to the low uniform operating temperature on crack

patching efficiency in a composite bonded repair are estimated using a two-stage analysis procedure originally proposed

by Rose (Int. J. Solids Struct. 17 (1981) 827). The problem is formulated for a bonded repair with an octagonal shaped

patch by using the linear elasticity theory. The thermal stresses due to thermal expansion mismatch between the re-

paired skin and the patch are determined first as if the patch is bonded rigidly to an uncracked skin, by using the

equivalent inclusion method. The stress intensity factor associated with these thermal stresses is then estimated by using

the displacement compatibility method for a sandwich plate with a part-through and a debonding crack. � 2002

Elsevier Science Ltd. All rights reserved.

Keywords: Composite bonded repair; Thermal stresses; Stress intensity factor

1. Introduction

The efficiency of the repair technique involving adhesively bonded composite patch to increase the
durability and damage tolerance of cracked aerospace metallic structures at low cost has been long rec-
ognized. Theoretical analyses to compute the stress intensity factor after repair had been conducted for
both mechanical and thermal loadings (Rose, 1988; Freddell, 1994; Wang et al., 2000). However, these
analyses were limited to a case of an elliptical or circular patch. Recently, Duong et al. (2001) had derived
an approximate algorithmic solution for the elastic fields in an infinite isotropic sheet containing a rigidly
bonded orthotropic patch of an octagonal shape subjected to a far field tension. As a continuing effort of
that earlier work, the solution approach employed there will be extended here to include the analysis of a
bonded repair under thermal loading.

Repaired structures are usually subjected to two types of thermal loading: heating and cooling cycle
associated with the curing process of the adhesive and the low operating temperature of the aircraft during
high altitude cruising. Since the thermal expansion coefficients of the repaired skin and the patch are
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significantly different, these thermal loads may induce large residually thermal stresses and therefore affect
the efficiency of the repair. The objective of this study is, therefore, to develop an analytical method to
characterize these thermal stresses and to estimate their effects on a cracked metallic skin repaired with an
adhesively bonded composite patch. Even though the adhesive during bond formation is better charac-
terized by a constitutive description which incorporates its dependence on the rate of mechanical defor-
mation and on the thermal history (Duong and Knauss, 1995); however, for simplicity, the adhesive is
modeled here as a linear elastic material with a zero stiffness and a glassy modulus at temperatures above
and below its glass transition temperature, respectively.

2. Two-stage analysis procedure

The analysis of a bonded repair under thermal loading is divided into two stages as shown in Fig. 1,
following Rose’s approach. The value of dividing the analysis into these two stages is that each stage can be
solved by a different analytical method employing different set of appropriate simplifying assumptions. In
the first stage, the bond between the patch and the repaired skin is assumed to be rigid and the bonded
structure is subjected to a thermal field simulating the curing process and the low operating temperature
condition. The repaired skin is also assumed to contain no crack. This problem is solved by using the
equivalent inclusion method, following the approach recently developed by Duong et al. (2001) for ana-
lyzing the stress field in an infinite isotropic sheet rigidly bonded with a polygon-shaped orthotropic patch
under a far field tension. The thermal stresses at the prospective crack location are then determined. The
effects of the thermally induced stresses on crack patching efficiency is then assessed in the second stage
analysis, where a crack is introduced into a residually stressed, patched skin while the patch is assumed to
be infinite extent. By employing the displacement compatibility method considered by Duong and Yu
(1997) earlier for a part-through cracked sandwich plate, which accounts for both the pre-existing disbond
around the crack and the flexibility of the adhesive, the stress intensity factor associated with these thermal
stresses is finally estimated.

Fig. 1. Two-stage analysis in Rose’s approach: (I) an uncracked skin containing an inhomogeneity under thermal loading, and (II) a

part-through cracked sandwich plate under surface crack pressure.
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3. Analytical solution

3.1. Stage I analysis

We will show first that the present thermal stress problem can be reformulated as an initial strain
problem, in which the patch is subjected to a prescribed initial strain field. This way will allow us to solve
the thermal stress problem directly within the context of the equivalent inclusion method. The equivalent
initial strain field prescribed in the patch will be derived here for two cases: (a) thermal cycle associated with
adhesive curing and (b) a uniform low operating temperature.
(a) Thermal cycle associated with adhesive curing: Adhesive curing usually involves heating the rein-

forced region using a heating blanket to a high temperature above the adhesive glass transition temperature
under pressure for a few hours and then allowing the adhesive and adherends to cool to the ambient
temperature. For simplicity, the temperature distribution around the heating blanket is assumed to be a
step function with the inside region held at one constant temperature while the outside being at a constant
ambient temperature. This assumption for the temperature field may not be realistic due to the heat
conduction; nevertheless, the analysis considered here still can provide a first ordered estimate of the effect
of curing on crack patching efficiency in the preliminary design phase. The effect of non-uniform thermal
field has been addressed before by Rose (1988) and more recently by Wang et al. (2000) for a circular patch,
which results can be used as correction factors for the present analyses.

During heating, the adhesive is assumed to be very soft so that the patch undergoes a free expansion
while the skin is under thermal stresses because the skin material outside of the heating region is still cool.
The thermal stresses in the skin during the heating phase can be easily calculated by using the Rodin’s or
Duong et al.’s solution for a polygon-shaped inclusion with a constant eigenstrain a0DT ðDT > 0Þ, where a0

is the skin thermal expansion coefficient and DT is the change in temperatures. The skin’s total strain inside
the heating region associated with these thermal stresses then can be calculated, which is smaller than a0DT
and will be denoted here by eð0Þij .

The next step is to cool the whole repair down to the ambient temperature. This cooling step will be
divided further into two substeps: (i) the patch is first held at a constant curing temperature and simul-
taneously subjected to a fictitious initial strain field �eð0Þij while the skin is cooled, and (ii) the patch is then
allowed to cool and to relax simultaneously the fictitious initial strain �eð0Þij imposed in (i). Since the patch is
subjected to an initial strain �eð0Þij in substep (i), the skin will contract back to its original shape without
experiencing any exerted forces from the patch, resulting in a stress free skin at the end of substep (i). It is
then clear that the described thermal stress problem is now reduced to an initial strain problem with an
initial strain of �ap

ijDT þ eð0Þij prescribed in the patch, where again DT > 0.
(b) Uniform low operating temperature: In this case, the whole patched skin is cooled uniformly. Fol-

lowing the same procedure as in (a), the skin is cooled uniformly first to a low operating temperature while
the patch is still at the ambient temperature and is subjected to a fictitious initial strain field a0DT , where a0

and DT are already defined previously but DT < 0 in the present case. This process will not result in any
thermal stresses in the skin since the patch will not exert any force on the skin. The patch is then allowed to
cool and to relax simultaneously the fictitious initial strain a0DT imposed previously. This thermal stress
problem is again reduced to an initial strain problem with an initial strain of ðap

ij � a0ÞDT prescribed in the
patch.

With the equivalent initial strain prescribed in the patch already determined, we now proceed to the
formulation of the mathematical model for stage I analysis. Since the patch is assumed to bond rigidly to a
repaired skin over an octagonal region X, the patch is considered as an integral part of the skin inside X,
and the skin with a patch incorporated is modeled as an inhomogeinity. This inhomogeinity has an effective
stiffness CI

ijkl and with a prescribed initial strain field eðTÞij as given in Appendix A. Let us therefore consider a
problem of an infinite isotropic, linear elastic sheet (skin) with a stiffness C0

ijkl containing an octagonal
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shaped inhomogeinity X with a stiffness CI
ijkl and subjected to an initial strain field eðTÞij . This problem will

then be solved by the equivalent inclusion method outlined below.
In the equivalent inclusion method, the stress and strain fields induced by an inhomogeneity occupied

region X will be the same as those induced by the eigenstrain field e�ij in the same region of a homogeneous
material C0

ijkl when e�ij is selected appropriately as shown in Fig. 2. Following the procedure given in (Duong
et al., 2001) for an inhomogeneity symmetric with respect to both coordinate axes, by approximating e�ij as a
second ordered polynomials of the position coordinates with yet to be determined coefficients, i.e.,

e�ij ¼ Bij þ Bijklxkxl; ð1Þ

and by expanding the prescribed initial strain field eðTÞij into a Taylor series, the equivalency condition re-
quires that Bij and Bijkl must satisfy the following system of linear equations (without summation on
subscript a):

DCaa11L11ð0Þ þ DCaa22L22ð0Þ � C0
aa11B

0
11 � C0

aa22B
0
22 ¼ �CI

aa11e
ðTÞ
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aa22e
ðTÞ
220;
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0
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L12ð0Þ � C0
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0
1212 ¼ �CI
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ðTÞ
1212;

ð2Þ

where

DCijkl ¼ C0
ijkl � CI

ijkl;

LabðxÞ ¼ Dab11ðxÞB0
11 þ Dab22ðxÞB0

22 þ Dab1111ðxÞB0
1111 þ Dab1122ðxÞB0

1122 þ Dab2211ðxÞB0
2211

þ Dab2222ðxÞB0
2222 þ Dab1212ðxÞB0

1212;

B0
ij ¼ Bij þ eðTÞij0 ;

Fig. 2. An illustration of the equivalent inclusion method: (A) an inhomogeinity problem with a prescribed initial strain field eTij, and
(B) an inclusion problem with eigenstrain e�ij.
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B0
ijkl ¼ Bijkl þ eðTÞijkl ða; b ¼ 1; 2Þ;

eðTÞij0 and eðTÞijkl are the constant and quadratic terms in the Taylor series of eðTÞij , respectively; DijklðxÞ and
DijklmnðxÞ are the strain fields in an infinite isotropic sheet containing an inclusion with a constant and
quadratic eigenstrain, respectively, when the coefficients Bs in Eq. (1) are identity tensors; and the notation
Labð0Þ and ðo2=ox21ÞLabð0Þ, etc., means that the Ls and their second derivatives are evaluated at point ð0; 0Þ,
i.e., the origin of the coordinate system. The tensors Ds in the above equations are also called Eshelby
tensors, and they can be evaluated for any polygon-shaped inclusion by using the algorithmic approach
outlined in (Rodin, 1996) and (Duong et al., 2001). These detailed evaluations will be omitted here for
reason of space.

Once the coefficients B0s, thus Bs and e�ij, are determined, the elastic fields in the inhomogeinity problem
can be obtained from the corresponding results of the equivalent inclusion problem as (Duong et al., 2001):

eIij ¼ DijklBkl þ DijklmnBklmn; ð3Þ

rI
ijðxÞ ¼

C0
ijklðeIkl � e�kl � eðTÞkl Þ inside X;

C0
ijkle

I
kl outside X:

(
ð4Þ

The stresses in the skin and in the patch inside the reinforced region then can be determined from rI
ij as

C0
ijklbðCI

klmnÞ
�1rI

mn þ eðTÞkl c and Cp
ijklbðCI

klmnÞ
�1rI

mn þ eðTÞkl � eðTÞðpÞkl c, respectively, where Cp
ijkl is the patch stiffness,

eðTÞðpÞij is the initial strain in the patch resulting from thermal expansion mismatch between the patch and the
repaired skin as defined earlier in the beginning of this section, and C0

ijkl is again the skin stiffness (Duong
et al., 2001).

3.2. Stage II analysis

Consider a patched cracked sheet shown in Fig. 1(b) subjected to a crack-surface pressure pðfÞ which is a
negative of the skin normal stress component ryy found in stage I analysis. The thicknesses of the cracked
sheet and the composite patch are small relative to the other in-plane dimensions, so that each component
can be considered to be under a generalized plane stress condition with the surface shears transmitted
through the adhesive acting as body forces. These body forces are unknowns and only pertinent near the
crack. The adhesive layer is treated as a two-dimensional shear spring. This problem is solved by the
displacement compatibility method considered earlier by Duong and Yu (1997), and Erdogan and Arin
(1972). First, the bonded interfacial area between the patch and the cracked skin is divided into a number of
small cells, as shown in Fig. 3. The unknown shear body forces assume to be constant in each cell. Even
though the outer boundary of the patch is unbounded in stage II analysis; however, for numerical inte-
gration purposes, the bonded interfacial area assumes to be finite and equal to R, and R is chosen such that
the stress intensity factor solution does not change appreciably for any larger area. The shear body forces,
therefore, have been approximated by a number of discrete forces P1i and P2i distributed uniformly over
cells centered at ðxi; yiÞ.

The interfacial shear body forces P1i and P2i are determined from the displacement compatibility re-
quirement between the cracked sheet and the patch over the bonded interface. The patch–skin displacement
compatibility equations in the y-direction are given by:

XM
m¼1

X2

b¼1

v
Pbm¼1

skin ðxn; yn; xm; ymÞ
�"

� v
Pbm¼1

patch ðxn; yn; xm; ymÞ �
ta

Gahmdm
d2bdnm

�
Pbm

#
¼ �vpðfÞskinðxn; ynÞ ð5Þ

for n ¼ 1; 2; . . . ;M . In the above equations,M is the number of cells making up the bonded interface; ta and
Ga are the thickness and shear modulus of the adhesive, respectively; P1m and P2m correspond to the x- and
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y-components of the interfacial shear body force distributed uniformly over the mth cell centered at ðxm; ymÞ;
hm and dm are the length and the width of the mth cell, respectively; vPbm¼1ðxn; yn; xm; ymÞ is the y-displacement
at the point ðxn; ynÞ due to a unit b- (x or y) component of the shear interfacial force acting at ðxm; ymÞ;
vpðfÞskinðxn; ynÞ is the displacement in the skin at ðxn; ynÞ due to the crack surface pressure pðfÞ; dij is defined
similarly to the Kronecker delta which is equal to 0 when i 6¼ j and 1 when i ¼ j. The appropriate ex-
pression for vPbm¼1ðxn; yn; xm; ymÞ for the cracked skin and the patch, and vpðfÞskinðxn; ynÞ can be found in the
reference by Duong and Yu (1997) mentioned above.

Similar equations for the displacement compatibility in the x-direction can also be derived. A total of 2M
simultaneous equations will result for the determination of Pbm. With the shear body forces known, the total
stress intensity factors at each crack tip due to these body forces and due to the crack surface pressure pðfÞ
can be calculated in a straight forward manner as illustrated in the last cited reference.

It should be noted that the present method allows modeling the effects of the pre-existing disbond and
the elastic–plastic behavior of the adhesive on the crack tip’s stress intensity factor. To account for the
former effect, the bonded interfacial area is needed to be discretized in such a way that it will not include
any pre-existing disbond region in its domain. For the latter effect, an iterative procedure must be employed
in the analysis. For simplicity, the adhesive is modeled in the present work as an elastic–perfectly plastic
material. The shear body forces are first assumed to be unknown and the adhesive is assumed to behave
linearly elastic. These unknown shear body forces are then determined by solving 2M simultaneous
equations. If the shear body force per unit area in any cell exceeds the adhesive yield strength, its value will
be set to the yield strength and that shear body force will no longer be a sought solution in the next it-
eration. The coefficient matrix and the right hand side of the 2M simultaneous equations are then modified
accordingly. In the next iteration, the relative displacement between the skin and the patch per unit ad-
hesive thickness in cells with their shear body force being set to the adhesive yield strength must be checked
to see if they are larger than the adhesive yield strain. If not, the prior settings of the values of the body
forces in these cells to the adhesive yield strength are incorrect and therefore must be removed. Another
iteration is carried out and the whole process is repeated until all prescribed requirements are met.

The solution procedure outlined in this section is general so that it can also be applied to the analysis of
an infinite strip patch as well, where the effect of the finite patch width on the stress intensity factor can be
properly account for. In that case, appropriate expression for the displacement of a infinite strip patch must
be used in Eq. (5). The displacement of an infinite strip patch due to a pair of interfacial shear body forces
distributed uniformly over a small cell can also be found in the reference by Duong and Yu (1997).

Fig. 3. Free body diagram of a patched cracked sheet under a crack surface pressure pðfÞ. For illustration purpose, P1; P2; . . . ; Pn are the
y-components of the transmitted shear forces each distributed uniformly over a discretized area (cell) of the bonded interface (Duong

and Yu, 1997).
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As a final remark, an alternative approach to stage II analysis had been proposed by Cox and Rose
(1994). This approach is based on the crack bridging model, which accounts for delamination in a self
consistent manner. This approach yields explicit and accurate analytical estimate for the stress intensity
factor.

4. Results and discussion

To assess the accuracy of the present analytical method, a problem of an octagonal patch repair under a
uniform low operating temperature is considered. The repair configuration is shown in Fig. 4. The effects of
disbond and elastic–plastic adhesive (if any) will be ignored. The material properties of the skin, patch and
adhesive as well as the temperature change used in the analysis are given below:

Skin: Aluminum. E ¼ 72:4 GPa, m ¼ 0:33, a ¼ 22:5 l/�C, ts ¼ 1:6 mm.
Patch: Boron/Epoxy. Ey ¼ 193:6 GPa, Ex ¼ 18:7 GPa, myx ¼ 0:21, Gxy ¼ 5:5 GPa, tp ¼ 0:79 mm,
ay ¼ 4:3 l/�C, ax ¼ 21:4 l/�C.
Adhesive: FM-73. G ¼ 0:46 GPa, ta ¼ 0:127 mm.
Temperature change: DT ¼ �75 �C.

The sensitivity of the length of the repair cracks relative to the patch width is studied. Four crack lengths
of 1.27, 2.54, 3.81, and 5.08 cm are considered in the analysis while the patch geometry is held constant. The
thermal stress in the uncracked skin underneath the patch and along the line y ¼ 0, resulting from stage I
analysis, is plotted and compared with the FE solution in Fig. 5. FE results are obtained by using the
commercial MSC/NASTRAN code. The skin is modeled as a single layer of solid elements while the patch
is modeled as six layers of solid elements, one for each ply. All elements are eight-node isoparametric solid
elements. In the finite element model, all nodes at the bottom of the skin surface are restrained from the

Fig. 4. Geometry of the example problem.
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out-of-plane displacement. The adhesive is modeled as one layer of anisotropic solids with very small
extensional moduli. Stresses from FE analysis are those reported at the centroids of the solid elements and
therefore are thickness-average stresses. From Fig. 5, it appears that the analytical result is in general lower
than the FE prediction, except near the edge of the patch, and they are in quite good agreement.

The crack tip stress intensity factors evaluated in stage II analysis along with FE results are presented in
Table 1. Typical telescopic grids used in the theoretical analysis are given in Fig. 6. FE results are again
obtained by using MSC/NASTRAN code with the crack actually being modeled. The skin, patch and
adhesive are modeled in a similar manner as for the case without a crack, but with a much finer mesh
around the crack. A special 3D crack tip element is used in the NASTRAN analysis to compute the stress
intensity factor. This crack-tip element is based on the hybrid assumed stress approach and is compatible
with the regular displacement-based elements. Since the skin is modeled as a single layer of solid elements,
the stress intensity factor obtained from the finite element analysis is the mid-plane value. From Table 1,
results from the two methods are in good agreement within 13%. However, analytical results show a dif-
ferent trend in comparing with the one predicted by the FE method. Several factors might attribute to such
discrepancy. First, the analytical method underestimates both the thermal stresses and their gradients in an
uncracked skin (see Fig. 5). Secondly, as shown in (Rose, 1988), the stress intensity factor for a patched
cracked sheet with a uniform traction acting on the crack surfaces will be nearly constant and thus inde-
pendent of the crack length when the crack exceeds a certain critical length, providing that there is no edge

Fig. 5. Thermally induced skin stress ryy underneath the patch and along the line y ¼ 0 for an uncracked patched skin subjected to a

uniform temperature change of �75 �C.

Table 1

The stress intensity factors for a cracked skin repaired with an octagonal patch and being subjected a uniform temperature change of

�75 �C

Half crack length, a (mm) Analytical KI (MPa
ffiffiffiffi
m

p
) FE KI (MPa

ffiffiffiffi
m

p
)

1.27 3.740 4.304

2.54 3.796 4.298

3.81 3.807 4.214

5.08 3.772 4.024
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boundary effect. Using the formula given in the reference just mentioned together with appropriate material
properties of the present skin, patch and adhesive, this critical crack length is computed to be about 2.5
mm. Since all crack lengths considered here exceed that critical length, the stress intensity factors are
therefore expected to be nearly constant and probably (based on intuition) slightly higher for a longer crack
in the uniform thermal stress field. This is what we observe from Table 1 for the crack length ratio
a=A < 0:4. However, since the thermal stress field is a decreasing function of the x-coordinate which is more
pronounced for x=A > 0:4, KI may decrease with an increase in crack length for a=A > 0:4. Furthermore,
since quite different meshes have been employed for different crack lengths in the finite element analyses (the
FE models were built using an in-house mesh generator), this mesh’s variation will definitely contribute
partially to the mentioned discrepancy. For reference, the skin stress near the patch edge at x ¼ 0 (point B
of Fig. 4) is found to be �35.2 MPa from the two methods.

To assess the effect of these thermal stresses on crack patching efficiency, the above repair problem is
reanalyzed for the case of far field mechanical loading only. The far field stress is assumed to be 103.4 MPa,
a typical fatigue stress range in transport aircraft fuselage. The stress in the uncracked skin along the line
y ¼ 0, resulting from stage I analysis is plotted in Fig. 7 for comparison with that from the case of thermal
loading only. Fig. 7 also includes parallel results from the finite element method. The skin stress near the
patch edge at point B is found close to 131 MPa from both methods. The crack tip stress intensity factors
evaluated in stage II analysis for the latter case are presented in Table 2. From Tables 1 and 2, one observes
that (a) analytical prediction for the mechanical loading case is more accurate than the former case, and (b)
the thermal effect on the stress intensity factor can be very significant. For the same repair configuration,
the thermal stress intensity factor can be more than 65% of that resulting from the fatigue load. Thus, the
effect of thermal stresses is to increase the crack tip stress intensity factor while reducing the load attraction.

Fig. 6. Typical telescopic grids used in stage II analysis for evaluating the stress intensity factor.
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It remains now to show how our curing model using a simplified (step) temperature distribution com-
pares with known analytical results for an isotropic circular patch with a realistic steady state temperature
field (Rose, 1988; Wang et al., 2000). This comparison will be illustrated through one specific repair
configuration and will be conducted for thermal stresses only. The patch is assumed to be circular and
isotropic with the modulus being the same as the principal modulus given in the previous example. The
radius of the patch is 12.7 cm. The heating blanket is assumed to be circular. According to our curing
model, only the shape of the heating blanket will change thermal stresses but not its size, providing that the
blanket is large enough to fully cover the patch. The skin properties are kept the same as before.

In Rose’s curing model, the bonded sheet is idealized as a circular plate with a radius of R0. The circular
reinforced region (of radius Ri) of the circular plate is heated to a uniform temperature Ti while the tem-
perature along the plate’s edge is prescribed to be T0. The temperature distribution in the middle region
between Ri and R0 is obtained from the heat transfer theory for a steady state condition. The edge of the
plate is also supported by continuous distributed springs with a spring constant of k. To simulate an infinite
plate as in our curing model, k had been chosen equal to ð1=ð1þ mÞR0Þ as mentioned in (Wang et al., 2000).
Results from Rose’s curing model for different R0 with a free edge condition as well as the case of an infinite
plate are compared with our curing model in Table 3 for Ti � T0 ¼ �75 �C. From Table 3, it is clear that
our model agree very well with the former model for an infinite plate. For reference, the thermal stresses in
the skin and in the patch under uniform temperature curing of the same temperature range are 62.9 and
�191 MPa, respectively.

Fig. 7. Skin stress ryy underneath the patch and along the line y ¼ 0 for an uncracked patched skin subjected to a far field stress of 103.4

MPa.

Table 2

The stress intensity factors for a cracked skin repaired with an octagonal patch and being subjected to a far field stress of 103.4 MPa

Half crack length, a (mm) Analytical KI (MPa
ffiffiffiffi
m

p
) FE KI (MPa

ffiffiffiffi
m

p
)

1.27 4.973 5.154

2.54 5.211 5.260

3.81 5.522 5.403

5.08 5.952 5.655
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5. Conclusion

An analytical method to estimate the thermal effects on crack patching efficiency in a composite bonded
repair is presented using Rose’s two-stage analysis procedure. Different methods were employed for dif-
ferent stages of the analysis. The problem is formulated under a generalized plane stress condition. The
effect of out-of-plane bending is presently ignored; however, it could also be included in the formulation of
stage I analysis as previously done by Beom and Earmme (1999) but for an elliptical inhomogeneity and of
stage II analysis using a crack bridging model proposed by Wang and Rose (1999).

Appendix A

In this appendix, the material properties of an inhomogeneity that is equivalent to the patched skin are
established. As shown in Rose (1981), in the absence of the initial strain in the patch, the material constants
of the inhomogeneity are related to those of the patch and the skin by:

AI
x ¼ ðA0

xt0 þ Ap
x tpÞ=tI;

AI
y ¼ ðA0

y t0 þ Ap
y tpÞ=tI;

mIxy ¼ ðm0xyA0
y t0 þ mpxyA

p
y tpÞ=ðA0

y t0 þ Ap
y tpÞ;

lI ¼ ðl0t0 þ lptpÞ=tI;

ðA:1Þ

where Ax, Ay , mxy and l are the material constants which appear in the stress–strain relation for an or-
thotropic plate as follows:

r11

r22

r12

8><
>:

9>=
>; ¼

Ax mxyAy 0

mxyAy Ay 0

0 0 l

2
64

3
75

e11
e22
c12

8><
>:

9>=
>;;

Ax �
Ex

1� mxymyx
; Ay �

Ey

1� mxymyx
;

ðA:2Þ

t is thickness while the superscript or subscripts I, 0 and p signify the inhomogeneity, skin and patch,
respectively. For an isotropic plate, Ex ¼ Ey ¼ E, mxy ¼ myx ¼ m, and l ¼ E=2ð1þ mÞ.

In the case the patch is subjected to a prescribed initial strain eðTÞðpÞij , it very easy to show that the
constitutive relation for the equivalent inhomogeneity is given by:

rI
ij ¼ CI

ijklðekl � eðTÞkl Þ;

eðTÞij ¼ tp
t0
CI�1

ijkl C
p
klmne

ðTÞðpÞ
mn ;

ðA:3Þ

where Cijkl is the stiffness, which in matrix form is given by Eq. (A.2) above.

Table 3

A comparison of y-component thermal stresses between Rose’s and the present curing model for a circular isotropic patch

R0=Ri Rose’s model (MPa) Present model (MPa)

rs rp rs rp

3 48.8 �140.5 – –

4 46.4 �136.7 – –

7 43.6 �131.1 – –

Infinite plate 36.8 �111.8 36.8 �111.8
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